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For Warm Dense Matter studies,
the NDCX-Il beam must be
accelerated to 3-4 MeV and
compressed to ~1 ns (~1 cm)

"

LITHIUM ION BEAM BUNCH Exiting beam available
for dE/dx measurement

Final Beam Energy: 3-4 MeV
Final Spot Size : ~ 1 mm diameter
Total Charge Delivered: 30 nC (~ 2x10!! particles or I., ~ 30 A)




NDCX-II will enable studies of warm dense matter
and key physics for ion direct drive
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to-date anticipated

NDCX NDCX-II

lon | K*' (A=39)| Li*' or Na*? (A=7 or 23)
lon energy | 400 keV 3-16 MeV
Focal radius | 1.5-3 mm| 0.5 mm

Pulse duration | 2-4 ns 1ns
Compression ratio | 60X 500X
Peak current | ~2 A ~30 A
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At least 40 ATA cells are available for NDCX-II

100mA, 500ns
Li* ion injector

water-filled
Blumleins

oil-filled
transmission lines
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30 ATA induction
cells with pulsed
1-3T solenoids

final energy
correction
induction cell neutralized drift

_ . compression region final fos and
Estimated cost: $6M with plasma sources

(includes contingency) target chamber
with diagnostics




ATA cells are in good condition and match NDCX-Il needs well

e They provide short, high-voltage accelerating pulses:
—Ferrite core: 1.4 x 10-3 Volt-seconds
—Blumlein: 200-250 kV for 70 ns

At front end, longer pulses need custom voltage sources; < 100 kV for cost

solenoid

water
cooling

| o Cells will be refurbished with
| Teststand & SWEAES B | stronger, pulsed solenoids
allows us to ey B R
study cells in

detail . A O




Some issues were resolved; favorable features emerged

Issues:

* An accelerating gap must be “on” while any of the beam overlaps its
extended fringe field

— To shorten the fringe, the 6.7-cm radius of the ATA beam pipe
Is reduced to 4.0 cm

« Some pulses must be “shaped” to combat space charge forces
— We’'ll do this via inexpensive passive circuits
» Space is limited
— 30-cell design (20 Blumleins + 10 lower-voltage sources) fits easily

Favorable features:

* Most of machine uses modular 5-cell “blocks”
* Induction cells can impart all or most of final ~8% velocity “tilt”

« Current of compressed beam varies weakly w/ target plane over ~40 cm
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A simple passive circuit can generate a wide variety of

waveforms
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We are well on our way toward a physics design for NDCX-II

e Accel-decel injector produces a ~ 100 keV Li* beam with ~ 67 mA flat-top
e Induction accelerates itto 3.5 MeV at2 A
e The 500 ns beam is compressedto ~ 1 nsinjust~ 14 m
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Principle 1: Shorten Beam First (“non-neutral drift compression”)

Compress longitudinally before main acceleration

Want < 70 ns transit time through gap (with fringe field) as soon as
possible

==> can then use 200-kV pulses from ATA Blumleins

Compress carefully to minimize effects of space charge

Seek to achieve velocity “tilt” v,(z) ~ linear in z “right away”
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Principle 2: Let It Bounce

« Rapid inward motion in beam frame is required to get below 70 ns
« Space charge ultimately inhibits this compression

 However, so short a beam is not sustainable
— Fields to control it can’t be “shaped” on that timescale
— The beam “bounces” and starts to lengthen

» Fortunately, the beam still takes < 70 ns because it is now moving faster

 We allow it to lengthen while applying:
— additional acceleration via flat pulses
— confinement via ramped (“triangular”) pulses

» The final few gaps apply the “exit tilt” needed for Neutralized Drift
Compression
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Pulse length (m) vs. z of center-of-mass
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Pulse duration vs. z
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+ time for a single particle at mean
energy to cross the finite-length gap
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Voltage waveforms for all gaps
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A series of snapshots shows how the (E,,z) phase space and

the line charge density evolve
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We use the Warp code to simulate the NDCX-Il beam in (r,z)

500 ns
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Preliminary Warp (r,z) beam-on-target is encouraging; transverse
dynamics and focusing optics design is still at an early stage

Longitudinally: the goal is achieved; | Transversely: peak fluence of 17 J/cm?
most of the beam’s 0.1 J passes is less than the 30 J/cm? desired;
through the target plane in ~1.2 ns /8% of beam falls within a 1 mm spot
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1-D code (top) & Warp (bottom) results agree, with differences
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We look forward to a novel and flexible research platform

* The design concept is compact and attractive
— It applies rapid bunch compression and acceleration
— It makes maximal use of ATA induction modules and pulsed power
— Beam emittance is well preserved in simulations

... but considerable work remains before this is a true “physics design”

« NDCX-Il will be able to deliver far greater beam energy and peak power for
Warm Dense Matter physics than NDCX-I

* We will soon begin to develop an NDCX-II acceleration schedule that
delivers a ramped-energy beam, for energy coupling and hydrodynamics
studies relevant to direct-drive Heavy lon Fusion
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See Bill Sharp’s poster this afternoon:
Session UP6, Marsalis A/B 2:00-5:00, #73

(& other interesting posters in 60’s, 70’s, 80’s)
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Abstract

Toward a physics design for NDCX-II, a next-step platform for ion beam-driven
physics studies! A. FRIEDMAN, D. P. GROTE, W. M. SHARP, LLNL; E.
HENESTROZA, M. LEITNER, B. G. LOGAN, W. L. WALDRON, LBNL --- The Heavy
lon Fusion Science Virtual National Laboratory, a collaboration of LBNL, LLNL, and
PPPL, is studying Warm Dense Matter physics driven by ion beams, and basic target
physics for heavy ion-driven Inertial Fusion Energy. A low-cost path toward the next-
step facility for this research, NDCX-II, has been enabled by the recent donation of
induction cells and associated hardware from the decommissioned Advanced Test
Accelerator (ATA) facility at LLNL. We are using a combination of analysis, an
interactive one-dimensional kinetic simulation model, and multidimensional Warp-code
simulations to develop a physics design concept for the NDCX-Il accelerator section.
A 30-nC pulse of singly charged Li ions is accelerated to ~3 MeV, compressed from
~500 ns to ~1 ns, and focused to a sub-mm spot. We present the novel strategy
underlying the acceleration schedule and illustrate the space-charge-dominated beam
dynamics graphically.
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Extras
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NDCX-II represents a significant upgrade over NDCX-|

Ton (atomic Linac Ton Beam | Target | Range | Energy
number / mass of | voltage | energy | energy | pulse | -microns | density
common isotope) | - MV | - MeV| -] - 1S (in..) | 10"J/m’
NDCX-I K" (19/39) 0.35 0.35 [ 0.001-] 2-3 0.3/1.5 0.04
0.003 (in solid/ to
20% Al) 0.06
NDCX-II Li” (3/7) 3.5-135-]101-] 1-2 7 -4 0.25
or 5 15 0.28 | (or 5 w| (in solid to
Na™ (11 /23) hydro)| Al 1

« Baseline for WDM experiments: 1-ns Li* pulse (~ 2x10'" ions, 30 nC, 30 A)

» For experiments relevant to ion direct drive: require a longer pulse with a

“ramped” kinetic energy, or a double pulse.
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NDCX-Il uses an accel-decel injector in which the “einzel lens”
effect provides transverse confinement

+102 kV pulsed source +68 kV DC -1770 kv DC  solenoid
10 mA/cm? extraction electrode accel electrode
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Physics design effort relies on PIC codes

* 1-D PIC code that follows (z,v,)
— Poisson equation with transverse falloff (“HINJ model”) for space charge

Jo = 2 log (rpipe / Theamo) k,?=41(9p beamo?)
— A few hundred particles
— Models gaps as extended fringing field (Ed Lee’s expression)
— Flat-top initial beam with parabolic ends, with parameters from a Warp run

— “Realistic” waveforms: flat-top,“triangles” from circuit equation,
and low-voltage shaped “ears” at front end

— Interactive (Python language)
« Warp
— 3-D and axisymmetric (r,z) models; (r,z) used so far
— Electrostatic space charge and accelerating gap fields
— Time-dependent space-charge-limited emission

.
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These snapshots show how the (v,,z) phase space and the line
charge density evolve (note the auto-scaling)
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Simulations of NDCX-II neutralized compression and focus
suggest that a plasma of density ~ 1074 cm-3 is desirable

- Idealized beam, uniform plasma, so far: . Bem'[lgtens'ty 50
— Li*, 2.8 MeV, 1.67 eV temperature q g .
— 2-cm -5 or -6.7 mrad convergence
— uniform current density; € = 24 mm-mrad 3
. . . [ . ; E
— 0.7-A with parabolic 50-ns profile asma—
— applying ideal tilt for 30 ns of beam '
%2 mm 1-ns beam has 2x10'3 cm- density
NDCXII 8.600 ; IS
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(LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code startin be used)
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We simulate injection from Cathodic-Arc Plasma sources

1.2 ns

Number density (1/cm**3)
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* This run corresponds to an NDCX-I configuration with 4 sources
* It was made by Dave Grote using Warp in 3-D mode
- LSP has been used extensively for such studies
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Progress has been encouraging; much remains to be done

Proper accounting for initial beam-end energy variation due to space charge
(the 1-D run shown was initiated with a fully-formed uniform-energy beam)

— Other 1-D runs used a “model” initial energy variation and an entry “ear” cell;
they produced compressed beams similar to the one shown

— However, that variation was not realistic; a Warp run using the 1-D-derived
waveforms yielded inferior compression

» Better understanding of beam-end wrap-around (causes and consequences)
» A prescription for setting solenoid strengths to yield a well-matched beam

» Optimized final focusing, accounting for dependence of the focal spot upon velocity
tilt, focusing angle, and chromatic aberration

» Assessment of time-dependent focusing to correct for chromatic effects

« Development of plasma injection & control for neutralized compression & focusing
(schemes other than the existing FCAPS may prove superior)

« Establishment of tolerances for waveforms and alignment

Major goals remain:

— a self-consistent source-through-target design, including
assessment of tolerances etc., for WDM studies

— a prescription for modifications offering multiple pulses, ramped
energy, and/or greater total energy, for ion direct drive studies
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